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Figure 1. Our method can extrapolate an image of limited field of view (left) to a full panoramic image (bottom right) with the guidance
of a panorama image of the same scene category (top right). The input image is roughly aligned with the guide image as shown with the
dashed red bounding box.

Abstract

We significantly extrapolate the field of view of a photo-
graph by learning from a roughly aligned, wide-angle guide
image of the same scene category. Our method can extrapo-
late typical photos into complete panoramas. The extrapo-
lation problem is formulated in the shift-map image synthe-
sis framework. We analyze the self-similarity of the guide
image to generate a set of allowable local transformations
and apply them to the input image. Our guided shift-map
method preserves to the scene layout of the guide image
when extrapolating a photograph. While conventional shift-
map methods only support translations, this is not expres-
sive enough to characterize the self-similarity of complex
scenes. Therefore we additionally allow image transforma-
tions of rotation, scaling and reflection. To handle this in-
crease in complexity, we introduce a hierarchical graph op-
timization method to choose the optimal transformation at
each output pixel. We demonstrate our approach on a vari-
ety of indoor, outdoor, natural, and man-made scenes.

1. Introduction
When presented with a narrow field of view image hu-

mans can effortlessly imagine the scene beyond the particu-
lar photographic frame. In fact, people confidently remem-
ber seeing a greater expanse of a scene than was actually
shown in a photograph, a phenomena known as “bound-

ary extension” [15]. In the computational domain, numer-
ous texture synthesis and image completion techniques can
modestly extend the apparent field of view (FOV) of an im-
age by propagating textures outward from the boundary.
However, no existing technique can significantly extrapo-
late a photo because this requires implicit or explicit knowl-
edge of scene layout. Recently, Xiao et al. [29] introduced
the first large-scale database of panoramic photographs and
demonstrated the ability to align typical photographs with
panoramic scene models. Inspired by this, we ask the ques-
tion: is it possible to dramatically extend the field of view
of a photograph with the guidance of a representative wide-
angle photo with similar scene layout?

Specifically, we seek to extrapolate the FOV of an input
image using a panoramic image of the same scene category.
An example is shown in Figure 1. The input to our system
is an image (Figure 1, left) roughly registered with a guide
image (Figure 1, top). The registration is indicated by the
red dashed line. Our algorithm extrapolates the original in-
put image to a panorama as shown in the output image on
the bottom right. The extrapolated result keeps the scene
specific structure of the guide image, e.g. the two vertical
building facades along the street, some cars parked on the
side, clouds and sky on the top, etc. At the same time, its
visual elements should all come from the original input im-
age so that it appears to be a panorama image captured at
the same viewpoint. Essentially, we need to learn the shared
scene structure from the guide panorama and apply it to the
input image to create a novel panorama.

We approach this FOV extrapolation as a constrained
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texture synthesis problem and address it under the frame-
work of shift-map image editing [25]. We assume that
panorama images can be synthesized by combining mul-
tiple shifted versions of a small image region with limited
FOV. Under this model, a panorama is fully determined by
that region and a shift-map which defines a translation vec-
tor at each pixel. We learn such a shift map from a guide
panorama and then use it to constrain the extrapolation of
a limited FOV input image. Such a guided shift-map can
capture scene structures that are not present in the small im-
age region, and ensures that the synthesized result adheres
to the layout of the guide image.

Our approach relies on understanding and reusing the
long range self-similarity of the guide image. Because a
panoramic scene typically contains surfaces, boundaries,
and objects at multiple orientations and scales, it is diffi-
cult to sufficiently characterize the self-similarity using only
patch translations. Therefore we generalize the shift-map
method to optimize a general similarity transformation, in-
cluding scale, rotation, and mirroring, at each pixel. How-
ever, direct optimization of this “similarity-map” is compu-
tationally prohibitive. We propose a hierarchical method to
solve this optimization in two steps. In the first step, we fix
the rotation, scaling and reflection, and optimize for the best
translation at each pixel. Next, we combine these interme-
diate results together with a graph optimization similar to
photomontage [1].

2. Related Work
Human vision. Intraub and Richardson [15] presented

observers with pictures of scenes, and found that when ob-
servers drew the scenes according to their memory, they
systematically drew more of the space than was actually
shown. Since this initial demonstration, much research has
shown that this effect of “boundary extension” appears in
many circumstances beyond image sketching. Numerous
studies have shown that people make predictions about what
may exist in the world beyond the image frame by using vi-
sual associations or context [2] and by combining the cur-
rent scene with recent experience in memory [23]. These
predictions and extrapolations are important to build a co-
herent percept of the world [14].

Environment map estimation from a single image.
Rendering techniques rely on panoramic environment maps
to realistically illuminate objects in scenes. Techniques
such as [21, 16] estimate environment maps from single
images in order to manipulate material properties and in-
sert synthetic objects in existing photographs. In both cases,
the synthesized environment maps are not very realistic, but
they do create plausible models of incident light. Our tech-
nique could be used to generate higher quality environment
maps for more demanding rendering scenarios (e.g. smooth
and reflective objects).

Figure 2. Baseline method. Left: we capture scene structure by the
motion of individual image patches according to self-similarity in
the guide image. Right: the baseline method applies these mo-
tions to the corresponding positions of the output image for view
extrapolation.

Inpainting. Methods such as [3, 22, 4] solve a diffu-
sion equation to fill in narrow image holes. Because they
do not model image texture in general, these methods can-
not convincingly synthesize large missing regions. Further,
they are often applied to fill in holes with known, closed
boundaries and are less suitable for FOV extension.

Texture synthesis. Example based texture synthesis
methods such as [9, 8] are inherently image extrapolation
methods because they iteratively copy patches from known
regions to unknown areas. More sophisticated optimization
methods [20] preserve texture structure better and reduce
seam artifacts. These techniques were applied for image
completion with structure-based priority [5], hierarchical
filtering [7] and iterative optimization [26]. Hertzmann et
al. [13] introduced a versatile “image analogies” framework
to transfer the stylization of an image pair to a new image.
Shift-map image editing [25] formulates image completion
as a rearrangement of image patches. Kopf et al. [19] ex-
trapolate image boundaries by texture synthesis to fill the
boundaries of panoramic mosaics. Poleg and Peleg [24] ex-
trapolate individual, non-overlapping photographs in order
to compose them into a panorama. These methods might
extrapolate individual images by as much as 50% of their
size, but we aim to synthesize outputs which have 500% the
field of view of input photos.

Hole-filling from image collections. Hays and
Efros [11] fill holes in images by finding similar scenes in
a large image database. Whyte et al. [27] extend this idea
by focusing on instance-level image completion with more
sophisticated geometric and photometric image alignment.
Kaneva et al. [18, 17] can produce infinitely long panoramas
by iteratively compositing matched scenes onto an initial
seed. However, these panoramas exhibit substantial seman-
tic “drift” and do not typically create the impression of a
coherent scene. Like all of these methods, our approach re-
lies on information from external images to guide the image
completion or extrapolation. However, our singular guide
scene is provided as input and we do not directly copy con-
tent from it, but rather learn and recreate its layout.
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Figure 3. Arch (the first row) and Theater example (the second row). (a) and (b) are the guide image and the input image respectively. (c)
and (d) are the results generated by the baseline method and our guided shift-map method.

3. Overview

Our goal is to expand an input image Ii to I with larger
FOV. Generally, this problem is more difficult than filling
small holes in images because it often involves more un-
known pixels. For example, when I is a full panorama,
there are many more unknown pixels than known ones. To
address this challenging problem, we assume a guide image
Ig with desirable FOV is known, and Ii is roughly regis-
tered to Iig (the “interior” region of Ig). We simply reuse Ii
as the interior region of the output image I . Our goal is to
synthesize the exterior of I according to Ii and Ig .

3.1. Baseline method

We first describe a baseline algorithm. Intuitively, we
need to learn the transformation between Iig and Ig , and
apply it to Ii to synthesize I . This transformation can be
modeled as the motions of individual image patches. Fol-
lowing this idea, as illustrated in Figure 2, for each pixel
q in the exterior region of the guide image, we first find a
pixel p in the interior region, such that the two patches cen-
tered at q and p are most similar. To facilitate matching,
we can allow translation, scaling, rotation and reflection of
these image patches. This matching suggests that the pixel
q in the guide image can be generated by transferring p with
a transformation M(q), i.e. Ig(q) = Ig(q ◦M(q)). Here,
p = q ◦M(q) is the pixel coordinate of q after transformed
by a transformation M(q). We can find such a transforma-
tion for each pixel of the guide image by brute force search.
As the two images Ii and Ig are registered, these transfor-
mations can be directly applied to Ii to generate the image
I as I(q) = Ii(q ◦M(q)).

To improve the synthesis quality, we can further adopt
the texture optimization [20] technique. Basically, we sam-

ple a set of grid points in the image I . For each grid point,
we copy a patch of pixels from Ii centered at its matched
position, as the blue and green boxes shown in Figure 2.
Patches of neighboring grid points overlap with each other.
Texture optimization iterates between two steps to synthe-
size the image I . First, it finds an optimal matching source
location for each grid point according to its current patch.
Second, it copies the matched patches over and averages the
overlapped patches to update the image.

However, as shown in Figure 3 (c), this baseline does
not generate appealing results. The results typically show
artifacts such as blurriness, incoherent seams, or semanti-
cally incorrect content. This is largely because this baseline
method is overly sensitive to the registration between the in-
put and the guide image. In most cases, we can only hope to
have a rough registration such that the alignment is seman-
tically plausible but not geometrically perfect. For exam-
ple, in the theater example shown in Figure 3, the registra-
tion provides a rough overlap between regions of chairs and
regions of screen. However, precise pixel level alignment
is impossible because of the different number and style of
chairs. Such misalignment leads to improper results when
the simple baseline method attempts to strictly recreate the
geometric relationships observed in the guide image.

3.2. Our generalized shift-map

To handle the fact that registration is necessarily inexact,
we do not directly copy transformations computed from Ig
according to the registration of Ii and Ig . Instead, we for-
mulate a graph optimization to choose an optimal transfor-
mation at each pixel of I . Specifically, this optimization is
performed by minimizing the following energy,

E(M) =
∑
q

Ed(M(q)) +
∑

(p,q)∈N

Es(M(p),M(q)). (1)
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Here, q is an index for pixels, N is the set of all neighbor-
ing pixels. Ed(·) is the data term to measure the consis-
tency of the patch centered at q and q ◦M(q) in the guide
image Ig . In other words, when the data term is small, the
pixel q in the guide image Ig can be synthesized by copy-
ing the pixel at q ◦M(q). Since we expect I to have the
same scene structure as Ig (and Ii is registered with Iig), it
is therefore reasonable to apply the same copy to synthesize
q in I . Specifically,

Ed(M(q)) = ‖R(q, Ig)−R(q ◦M(q), Ig)‖2. (2)

R(x, I) denotes the vector formed by concatenating all pix-
els in a patch centered at the pixel x of the image I .

Es(·, ·) is the smoothness term to measure the compat-
ibility of two neighboring pixels in the result image. The
smoothness cost penalizes incoherent seams in the result
image. It is defined as the following,

Es(M(p),M(q)) = ‖I(q ◦M(q))− I(q ◦M(p))‖2
+‖I(p ◦M(q))− I(p ◦M(p))‖2. (3)

If M(q) is limited to translations, this optimization has
been solved by the shift-map method [25]. He et al. [12]
further narrowed down M(q) to a small set of representa-
tive translationsM obtained by analyzing the input image.
Specifically, a translation M will be present in the represen-
tative translation set only if many image patches can find a
good match by that translation. This set M captures the
dominant statistical relationships between scene structures.
In our case, we cannot extract this set from the input image
Ii, because its FOV is limited and it does not capture all the
useful structures. So we estimate such a set from the guide
image Ig , and apply it to synthesize the result I from the
input Ii, as shown in Figure 5. In this way, it ensures I to
have the same structure as Ig . As our set of representative
translationsM is computed from the guide image, we call
our approach the guided shift-map method.

However, in real images, it is often insufficient to
just shift an image region to re-synthesize another image.
Darabi et al. [6] introduced more general transformations
such as rotation, scaling and reflection for image synthesis.
So we also include rotation, scaling and reflection which
makes M(q) a general similarity transformation. This
presents a challenging optimization problem.

4. Hierarchical Optimization
Direct optimization of Equation 1 for general similar-

ity transformations is difficult. Pritch et al. [25] intro-
duced a multi-resolution method to start from a low res-
olution image and gradually move to the high resolution
result. Even with this multi-resolution scheme, the search
space for M(q) is still too large for general similarity trans-
formations. We propose a hierarchical method to solve this

Figure 5. Left: in the guide image, the green patches vote for a
common shift vector, because they all can find a good match (blue
ones) with this shift vector; Right: The red rectangle is the output
image canvas. The yellow rectangle represents the input image
shifted by a vector voted by the green patches in the guide image.
The data cost within these green patches is 0. The data cost is set
to C for the other pixels within the yellow rectangle, and set to
infinity for pixels outside of the yellow rectangle.

problem in two steps. As shown in Figure 4, we first fix
the rotation, scaling and reflection parameters and solve an
optimal translation map. In the second step, we merge these
intermediate results to obtain the final output in a way sim-
ilar to Interactive Digital Photomontage [1].

4.1. Guided shift-map at bottom level

We represent a transformation T by three parameters
r, s,m for rotation, scaling, and reflection respectively. We
uniformly sample 11 rotation angles from the interval of
[−45o, 45o], and 11 scales from [0.5, 2.0]. Vertical reflec-
tion is indicated by a binary variable. In total, we have
11∗11∗2 = 242 discrete transformations. For each transfor-
mation T , we use the guided shift-map to solve an optimal
translation at each pixel. We still use M(q) to denote the
translation vector at a pixel q. For better efficiency, we fur-
ther narrow down the transformation T to 20 ∼ 50 differ-
ent choices. Specifically, we count the number of matched
patches (by translation) for each discretized T , and only
consider those T with larger number of matches.

Building representative translations As observed in
[12], while applying shift-map image editing, it is prefer-
able to limit these shift vectors to a small set of predeter-
mined representative translations. So we use Ig to build a
set of permissible translation vectors and apply them to syn-
thesize I from Ii.

For each pixel q in the exterior of Ig , we search for its
K nearest neighbors from the interior Iig transformed by
T , and choose only those whose distance is within a fixed
threshold. Each matched point p provides a shift vector
p− q. We build a histogram of these vectors from all pixels
in Ig . After non-maximum suppression, we choose all local
maximums as candidate translations. For efficiency consid-
eration, we choose the top 50 candidate translations to form
the set of representative translations MT . In most experi-
ments, more than 80% of the exterior pixels can find a good
match according to at least one of these translations.

For the K nearest neighbor search, we measure the sim-
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Figure 4. Pipeline of hierarchical optimization. We discretize a number of rotation, scaling and reflection. For each of the discretizd
transformation Ti, we compute a best translation at each pixel by the guided shift-map method to generate ITi . These intermediate results
are combined in a way similar to the Interactive Digital Photomontage [1] to produce the final output.

ilarity between two patches according to color and gradient
layout using 32×32 color patches and 31-dimensional HOG
[10] features, respectively. We normalize the distance com-
puted by color and HOG feature respectively according to
the standard deviation of the observed distance.

Graph optimization We choose a translation vector
at each pixel from the candidate set MT by minimizing
the graph energy Equation 1 with the guidance condition
M(q) ∈ MT for any pixel q. We further redefine the data
term in Equation 2 as illustrated in Figure 5. For any trans-
lation M ∈ MT , the input image Ii is first transformed
by T (which is not shown in Figure 5 for clarity), and then
shifted according to M . For all the pixels (marked in red
in Figure 5) that cannot be covered by the transformed Ii
(yellow border), we set their data cost to infinity. We fur-
ther identify those pixels (marked in green in Figure 5) that
have voted for M when constructing the shift vector his-
togram, and set their data cost to zero. For the other pixels
that can be covered by the transformed Ii but do not vote
for M , we set their data cost to a constant C. C = 2 in our
experiments. The smoothness term in Equation 3 is kept un-
changed. We then minimize Equation 1 by alpha-expansion
to find the optimal shift-map under the transformation T .
This intermediate synthesis result is denoted by IT .

4.2. Photomontage at top level

Once we have an optimal shift-map resolved for each
transformation T , we seek to combine these results with an-
other graph optimization. At each pixel, we need to choose
an optimal transformation T (and its associated shift vector
computed by the guided shift-map). This is solved by the
following graph optimization

E(T ) =
∑
q

Ed(T (q)) +
∑

(p,q)∈N

Es(T (p), T (q)). (4)

Here, T (q) = (r, s,m) is the selected transformation at a
pixel q. The data term at a pixel q evaluates its synthe-
sis quality under the transformation T (q). We take all data

costs and smoothness costs involving that pixel from Equa-
tion 1 as the data term Ed(T (q)). Specifically,

Ed(T (q)) = ET
d (M

T (q)) +
∑

p∈N(q)

ET
s (M

T (p),MT (q)).

Here, MT (q) is the optimal translation vector selected for
the pixel q under the transformation T . ET

d (·) and ET
s (·, ·)

are the data term and smoothness terms of the guide shift-
map method under the transformation T . N(q) is the set of
pixels which neighbor q.

The smoothness term is defined similar to Equation 3,

Es(T (p), T (q)) = ‖IT (p)(q)− IT (q)(q)‖2
+‖IT (p)(p)− IT (q)(p)‖2.

We then minimize the objective function Equation 4 by
alpha-expansion to determine a transform T at each pixel.
The final output at a pixel q is generated by transforming
Ii with T (q) and MT (q) and copying the pixel value at the
overlapped position.

5. Experiments
We evaluate our method with a variety of real pho-

tographs. Given an input image Ii, we find a suitable
Ig from the SUN360 panorama database [28] of the same
scene category as Ii or we use an image search engine. We
then provide a rough manual registration to align Ii and Ig
and run our algorithm to generate the results.

5.1. Comparison with the baseline method

Figure 3 shows two examples comparing our method
with the baseline method. Our method clearly outperforms
the baseline method. In the theater example, although rough
registration aligns semantically similar regions to the guide
image Ig , directly applying the offset vectors computed
in Ig to the I generates poor results. In comparison, our
method synthesizes correct regions of chair and wall by ac-
commodating the perspective-based scaling between exte-
rior and interior in the MT . In the Arch example, some
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Figure 6. We evaluate our method with different registration between Ii and Ig . (a) and (b) are the guide and input images. (c) shows
five different registrations. The red dashed line shows the manual registration. The others are generated by randomly shifting the manual
registration for 5%, 10%, 15% and 20% of the image width. (d)–(h) are the five corresponding results. These results are framed in the
same color as their corresponding dashed line rectangles.

parts of the tree in the exterior region of the guide image
match to patches in the sky in the interior region due to the
similarity of patch feature (both HOG and color). As a re-
sult, part of the tree region is synthesized with the color of
sky in the baseline method. Our method can avoid this prob-
lem by choosing the most representative motion vectors in
the guide image and thus avoid such outliers. Both exam-
ples show that our method is more robust than the baseline
method and does not require precise pixel level alignment.

We also tested PatchMatch with the baseline method de-
scribed in Section 3.1. While PatchMatch allows an almost
perfect reconstruction of the guide image from its interior
region, the resulting self-similarity field does not produce
plausible extrapolations of the input image. In general,
as more transformations are allowed, reconstruction of the
guide image itself strictly improves (Equation 1), but the
likelihood that these best transformations generalize to an-
other scene decreases. In choosing which transformations
to allow, there is a trade-off between expressiveness and ro-
bustness, and the similarity transforms we use seem to per-
form the best empirically.

Typically, our method takes about 10 minutes to synthe-
size a 640 by 480 image. Most of the time is spent on K
nearest neighbor search, for which numerous acceleration
techniques are available.

5.2. Robustness to registration errors

Our method requires the input image to be registered to
a subregion of the guide image. Here, we evaluate the ro-
bustness of our method with respect to registration errors.
Figure 6 shows an example with deliberately added regis-
tration error. We randomly shift the manually registered in-
put image for 5–20% of the image width (600 pixels). The

results from these different registrations are provided in the
Figure 6 (d)–(h). All results are still plausible, with more
artifacts when the registration error becomes larger. Gen-
erally, our method still works well for a registration error
below 5% of image width. In fact, for this dining car ex-
ample and most scenes, the “best” registration is still quite
poor because the tables, windows, and lights on the wall
cannot be aligned precisely. Our method is robust to mod-
erate registration errors, as we optimize the transformations
with the graph optimization.

5.3. Matching with HOG features

Unlike most texture transfer methods, our approach com-
pares image content with HOG features in addition to raw
color patches. Figure 7 shows an example of how the
recognition-inspired HOG can help our image extrapola-
tion. Some patches in the foliage are matched to patches
in the water in the guide image when the HOG feature is
not used. This causes some visual artifacts in the result as
shown in Figure 7 (c). The result with HOG feature is free
from such problems as shown in Figure 7 (d). Please refer
to the zoomed view in (b) for a clearer comparison.

5.4. Panorama Synthesis

When Ig is a panoramic image, our method can syn-
thesize Ii to a panorama. However, synthesizing a whole
panorama at once requires a large offset vector space for
voting to find representative translations. Also the size of
MT has to be much larger in order to cover the whole
panorama image domain. Both of these problems require
huge memory and computation.

To solve this problem, we first divide the panoramic
guide image Ig into several sub-images with smaller
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Figure 7. Synthesis with different patch feature. The result ob-
tained with HOG feature is often better than that from color fea-
tures alone.
but overlapping FOV. We denote these sub-images as
Ig1, Ig2, ..., Ign. The input image is register to ONE of
these sub-images, say Igr. We then synthesize the output
for each of these sub-image one by one. For example, for
the sub-image Ig1, we find representative translations by
matching patches in Ig1 to Igr. We then solve the hierar-
chical graph optimization to generate I1 from the input im-
age. Finally, we combine all these intermediate results to
a full panorama by photomontage, which involves another
graph cut optimization. This “divide and conquer” strategy
generates good results in our experiments. One such ex-
ample is provided in Figure 1. The success of this divide
and conquer approach also demonstrates the robustness of
our method, because it requires that all the sub-images be
synthesized correctly and consistently with each other.

Figure 8 shows more panorama results for outdoor, in-
door, and street scenes. The first column is the input image.
On the right hand side of each input image are the guide
image (upper image) and the synthesized result (lower im-
age). In all the panorama synthesis experiments, the 360◦

of panorama is divided into 12 sub-images with uniformly
sampled viewing direction from 0◦ ∼ 360◦. The FOV of
each sub-image is set to 65.5◦. This ensures sufficient over-
lapping between two nearby sub-images. The FOV of the
input images are around 40◦ ∼ 65.5◦ degrees.

6. Conclusion
We present the first study of the problem of extrapolat-

ing the field-of-view of a given image with a wide-angle
guide image of the same scene category. We design a novel
guided shift-map image synthesis method. The guide image
generates a set of allowable transformations. The graph op-
timization chooses an optimal transformation for each pixel
to synthesize the result. We generalize the conventional

shift-map to accommodate general similarity transforma-
tions. Our method can extrapolate an image to a panorama
and is successfully demonstrated on various scenes.
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